翻訳と辞書
Words near each other
・ Interswitch
・ InterSwitch Trunk
・ Intersymbol interference
・ Intersystem crossing
・ InterSystems
・ InterSystems Caché
・ InterTAN
・ Intertarsal articulations
・ Intertec Superbrain
・ Intertec Systems
・ Intertech
・ Intertek
・ Intertek Consumer Goods and Retail
・ Intertel
・ Intertemporal budget constraint
Intertemporal CAPM
・ Intertemporal choice
・ Intertemporal consumption
・ Intertemporal equilibrium
・ Intertemporal law
・ Intertemporal portfolio choice
・ Intertestamental period
・ Intertex
・ Intertextuality
・ Interthalamic adhesion
・ Intertheoretic reduction
・ Intertidal ecology
・ Intertidal spider
・ Intertidal wetland
・ Intertidal zone


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Intertemporal CAPM : ウィキペディア英語版
Intertemporal CAPM

The Intertemporal Capital Asset Pricing Model, or ICAPM, was an alternative to the CAPM provided by Robert Merton. It is a linear factor model with wealth and state variable that forecast changes in the distribution of future returns or income.
In the ICAPM investors are solving lifetime consumption decisions when faced with more than one uncertainty. The main difference between ICAPM and standard CAPM is the additional state variables that acknowledge the fact that investors hedge against shortfalls in consumption or against changes in the future investment opportunity set.
==Continuous time version==
Merton considers a continuous time market in equilibrium.
The state variable (X) follows a brownian motion:
: dX = \mu dt + s dZ
The investor maximizes his Von Neumann–Morgenstern utility:
:E_o \left\
whereT is the time horizon and B() the utility from wealth (W).
The investor has the following constraint on wealth (W).
Let w_i be the weight invested in the asset i. Then:
: W(t+dt) = (-C(t) dt )\sum_^n w_i(r_i(t+ dt) )
where r_i is the return on asset i.
The change in wealth is:
: dW=-C(t)dt +()\sum w_i(t)r_i(t+dt)
We can use dynamic programming to solve the problem. For instance, if we consider a series of discrete time problems:
:\max E_o \left\\int_t^ U()ds + B() \right\}
Then, a Taylor expansion gives:
: \int_t^U()ds= U()dt + \frac U_t ()dt^2 \approx U()dt
where t^
* is a value between t and t+dt.
Assuming that returns follow a brownian motion:
: r_i(t+dt) = \alpha_i dt + \sigma_i dz_i
with:
: E(r_i) = \alpha_i dt \quad ;\quad E(r_i^2)=var(r_i)=\sigma_i^2dt \quad ;\quad cov(r_i,r_j) = \sigma_dt
Then canceling out terms of second and higher order:
: dW \approx (\sum w_i \alpha_i - C(t) )dt+W(t) \sum w_i \sigma_i dz_i
Using Bellman equation, we can restate the problem:
: J(W,X,t) = max \; E_t\left\
subject to the wealth constraint previously stated.
Using Ito's lemma we can rewrite:
: dJ = J()-J()= J_t dt + J_W dW + J_X dX + \fracJ_ dX^2 + \fracJ_ dW^2 + J_ dX dW
and the expected value:
: E_t J()=J()+J_t dt + J_W E()+ J_X E(dX) + \frac J_ var(dX)+\frac J_ var() + J_ cov(dX,dW)
After some algebra〔: E(dW)=-C(t)dt + W(t) \sum w_i(t) \alpha_i dt
: var(dW) = ()^2 var(\sum w_i(t)r_i(t+dt) )= W(t)^2 \sum_ \sum_ w_i w_j \sigma_ dt
: \sum_^n w_i(t) \alpha_i = \sum_^n w_i(t)(- r_f ) + r_f
, we have the following objective function:
: max \left\^n">w_i(\alpha_i-r_f)+r_f ) - J_WC + \frac J_\sum_^n\sum_^n w_i w_j \sigma_ + J_X \mu + \fracJ_ s^2 + J_ W \sum_^n w_i \sigma_ \right\}
where r_f is the risk-free return.
First order conditions are:
: J_W(\alpha_i-r_f)+J_W \sum_^n w^
*_j \sigma_ + J_ \sigma_=0 \quad i=1,2,\ldots,n
In matrix form, we have:
: (\alpha - r_f ) = \frac \Omega w^
* W + \frac cov_
where \alpha is the vector of expected returns, \Omega the covariance matrix of returns, a unity vector cov_ the covariance between returns and the state variable. The optimal weights are:
: = \frac\Omega^(\alpha - r_f ) - \fracW}\Omega^ cov_
Notice that the intertemporal model provides the same weights of the CAPM. Expected returns can be expressed as follows:
: \alpha_i = r_f + \beta_ (\alpha_m - r_f) + \beta_(\alpha_h - r_f)
where m is the market portfolio and h a portfolio to hedge the state variable.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Intertemporal CAPM」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.